

SCULPTING: AN IMPROVED INSIDE OUT SCHEME FOR ALL
HEXAHEDRAL MESHING

 Kirk S. Walton1, Steven E. Benzley2, Jason Shepherd3
1Brigham Young University, Provo, UT, U.S.A. ksw@et.byu.edu

2 Brigham Young University, Provo, UT, U.S.A. seb@byu.edu
3Sandia National Laboratories, Albuquerque, NM, U.S.A. jfsheph@sandia.gov

ABSTRACT

Inside-out algorithms provide the ability to generate all hexahedral meshes by first introducing a structured mesh that bounds the
complete body modeled, then secondly by manipulating the exterior of this structured mesh to fit the specific boundary of the
body. Such algorithms generally provide high quality meshes on the interior of the body but suffer with lower quality elements
on the boundary. The sculpting algorithm as presented here, addresses the difficulty in forming quality near boundary elements
in two ways. The algorithm first introduces new methods to define an initial structured mesh and second uses collapsing
templates to reposition boundary elements to conform to the geometric topology prior to smoothing elements to the boundary.
The algorithm also provides the ability to subdivide the original object into sub-regions such that complex geometries can be
meshed.

Keywords: mesh generation, hexahedral meshing,

3 jfsheph@sandia.gov. Jason Shepherd was supported by the Mathematical, Information and Computational
Sciences Division of the U.S. Department of Energy, Office of Energy Research.

1. INTRODUCTION

Automatic all-hexahedral meshing of arbitrary three-
dimensional geometries continues to receive significant
attention. Over the past few years meshing efforts have
developed numerous algorithms to produce a conformal all-
hexahedral mesh. These methods include generalized
sweeping [1,2], block decomposition [3], tetrahedral based
[4,5], whisker weaving [6] and inside-out grid based [7,8,9].

None of these methods have proven to be an all-
encompassing algorithm and each has drawbacks to their use.
Generalized sweeping schemes are very versatile and fast,
and can have arbitrarily meshed source and target surfaces.
However acceptable geometries must have a generalized axis
of symmetry that defines a major sweeping direction.
Schemes to add minor sweep axes have enhanced this method
[10,11]. Block decomposition methods produce high quality
meshes but often are not very automated and require many
hours of user interaction. The tetrahedral based schemes
produce all-hexahedral meshes from an initial all-tetrahedral
mesh. The resulting all-hexahedral meshes often suffer from
poor quality. Whisker-woven meshes can be very compute
intensive and also often generate unacceptable interior

elements. Grid based algorithms while robust, often generate
poor quality elements at the boundary often because the
elements are not generally aligned with the volume boundary.
The lack of a single hexahedral-meshing algorithm that can
mesh all the volumes of a given model has spurred the
development of a new grid based algorithm. The goal of the
sculpting algorithm is to provide an automated all-hexahedral
mesh.

2. BOUNDING BOX GENERATION

Grid based, superposition, or inside-out methods all refer to a
class of algorithms that generate a mesh that is easy to create
and which covers a sufficient volume of the object with a
structured mesh. The initial mesh often comes from using a
simple mapping algorithm to mesh a volumetric bounding
box. Once the bounding box has been defined and the mesh
has been created, multiple steps are then needed to fit the
mesh precisely to the volume. Schneider’s initially proposed
to eliminate elements from the initial grid that are not
contained entirely within the volume and then project edges
from the remaining hexes to the surface of the volume
[7,8,9]. Others [12] have proposed using all the available
elements moving the nodes from elements nearest to the

mailto:ksw@et.byu.edu
mailto:jfsheph@sandia.gov

volume boundary to produce an interior and exterior meshes
and discarding the unwanted meshed area. In either of the
above mentioned cases the element edges are generally
parallel to one of the coordinate axis, which is often the
reason for jagged or uneven elements along the volume
boundary when the volume is not oriented with a global
coordinate axis. Figure 1 provides an example how slightly
rotating a volume away from its orientation with a global
coordinate axis will alter the volume mesh dramatically.

Figure 1. Distortion of a volumetric meshed used in
supper position methods once the meshing volume
is no longer oriented with the coordinate axis [Mesh
generated with GAMBIT a mesh generation code
from Fluent Inc.]

To address the alignment issue shown in Figure 1, the
sculpting algorithm uses a tight fitting-bounding box that will
provide the smallest box and same element layer orientation,
regardless of the volume’s rotation. While guaranteeing the
same mesh for all rotations this method does not guarantee
element layer orientation equal to the geometric boundary
orientation as shown in Figure 2 (in two-dimensions).

Figure 2. Comparison between a volumetric mesh
created

To ensure element layers are aligned with at least one of the
bounding surfaces of the volume, normals from planar faces
of the volume are checked for either parallelism or
perpendicularity with the principal axis of bounding box.
This check is first performed on the tight bounding box
because of the super-positioned grid will always be
consistent. If the check fails on the tight bounding box the
volume will be rotated into a position where the largest
number of planar faces will be aligned with the coordinate
axis and a coordinate grid is used. This test will always fail
when no planar faces exist on the body and a tight bounding
box is assumed to provide the best results.

Another difficulty that arises when using contemporary
bounding boxes is the computational time required to identify
hexes intersecting the volume boundary. Often when trying
to mesh a volume such as shown in Figure 3, the time to
delete the elements that would be created in the middle of the
volume is greater than the time it takes to capture the volume
boundary. To reduce the amount of containment checks
sculpting uses a series of bounding blocks rather than a single
large bounding box. By using smaller boxes and fusing them
together to form a conformal bounding mesh computational
time can be saved dramatically.

Figure 3. An example of a volume where meshing
time is increased due to a large number of
containment checks in the void area

Figure 4. Sub bounding boxes used to capture the

geometry of Figure 3.

3. HEX COLLAPSING

Original inside-out meshing routines projected element faces
onto the boundary whereas sculpting provides a new
approach to attempt to provide higher quality elements along
these crucial boundary regions. For example, Schneider’s [7]
approach is to initially remove any element that intersects a
geometry boundary and then project edges to the geometric
surface to create the boundary elements. On the other hand,
sculpting leaves the elements that intersect the volume
boundary and removes only elements that have no contact to
the geometry surface. Sculpting then invokes a process of
hexahedral collapsing followed by repositioning the
collapsed nodes to the geometry and completing the process
by high fidelity smoothing [12]. Figure 4 provides a simple
comparison between the traditional inside-out algorithm that
projects edges and sculpting's hex collapsing and node
smoothing scheme.

Figure 4. A comparison between projecting

algorithms and sculpting

Hex collapsing does inherently invoke some risks that poor
elements might be created and propagated though the mesh.
To avoid this a method of intelligent collapsing has been
implemented to identify collapsible edges. A collapsible

edge is defined as a series of boundary edges not included in
the same element and that each has three hexes and two
boundary faces attached. Collapsible edges are found by
searching the boundary faces for an acceptable edge. Once a
starting edge is found, this edge’s neighbors are recursively
checked to find linkable available edges. This process
proceeds until suitable end points are found. Suitable end
points are defined as points where the advancing collapsible
edge cannot find a continuing advancing edge or where the
next advancing edge remains part of the same element as the
current edge. Figure 5 illustrates examples of free end points,
where no advancing edge is found, and intersecting end
points, both open and closed. The left example shows three
collapsible edges that each have a free end point and an open
intersection end point. The right example shows three
collapsible edges that each have a free end point and a closed
intersection end point. In both examples the edges are
restricted from interacting one with the other to provide
independence when collapsing. While in the left example, as
shown there would be no problem if all three collapsible
edges were combined and acted together. If one of these
edges represented a curve between two planar surfaces,
sculpting would not allow the collapse because it would
disrupt the elements used to capture the geometric curve. For
this reason they are kept independent. In the case on the
right, they are also kept independent, though there currently
is no useful way of collapsing even one of the edges without
producing knife elements.

Figure 5. Example endpoints for collapsible edges

Figure 6 helps to describe collapsing on a mechanical part.
Each of the useful collapsible edges has been highlighted for
clarity. All of the selected edges for collapsing in this case
only have free end points. There are edges at the front of the
part where a cylinder protrudes from the surface that has
open and closed intersections that have not been highlighted.
If hex collapsing occurred in these regions poor element
quality would be introduced or element layers would be
disrupted.

Figure 6. Possible edges available for hex

collapsing on a mechanical part

Once all the collapsing edges are found, their interaction
between each other is compared to avoid conflicts and then
collapsing continues. Figure 7 shows how the mesh appears
after collapsible edges have been chosen and the collapsing
has taken place. As seen at the top of the part, there are
edges that were identified as valid that were not used because
it would have disrupted the collapsing of a neighboring edge.

Figure 7. Collapsed hexes on a mechanical part

Figure 8. Sculpted all hex mesh on a mechanical
part

For various exposed hexes collapsing templates have been
introduced to provide an intelligent collapsing method.
These templates are shown in Figure 9, where the hex
primitive is to the left of possible hex collapses.

Figure 9. Hex collapsing templates

4. FINALIZING BOUNDARY CAPTURE

Once hex collapsing has produced acceptable surface
elements, node repositioning is the final sculpting step
required to capture the complete volume boundary. Node
repositioning is a simple step provided that the node in
question can be moved to only one surface. However, if
there are multiple surfaces to which the node can be moved,
difficulties arise and logical decisions must be imposed.

We begin by introducing the two-dimensional situation. As
depicted in Figure 10, only nodes outside the volume
boundary move to the closest point on the nearest surface or
curve of the volume. Figure 10 provides a simple example of
a corner cut out of a two dimensional square. In general,
boundary nodes should be moved to the nearest geometric
surface. Because the rectangular surface is relatively simple
and easily contained in a box, most nodes can be aligned
along the boundary and do not need any adjustment.
However, along the cutout section there exists one layer of
elements (i.e. the horizontal row) that matches the surface
boundary, whereas a vertical layer intersects the boundary
edge and the respective nodes of these elements must be
moved to the boundary. This example demonstrates how
node movement cannot be simply based on placement to the
nearest surface. The node at the re-entrant corner must lie on
both boundary edges.

Figure 10. Node movement when a node lies on a

boundary yet needs to move because of
neighboring node movement

The three-dimensional situation is significantly more
complex. Figure 11 shows a cylindrical surface extruded
from the side of a flat surface. Note the boundary curve that
defines the intersection of the cylinder and the flat surface.
This boundary curve must be matched with the boundary
nodes that currently lie on the flat surface as a result of
element layer orientation. The nodes that will be used to
capture the boundary curve are shown bolded in Figure 11
and the solid arrows show the movement that will ensure
proper nodal alignment. The curve can be captured in a
similar manner as was done previously for Figure 10, once
the elements along the curved surface have properly moved
to this surface. Capturing the curved surface correctly is not
difficult away from the boundary curve, but whenever
elements near the curve need to be adjusted, node movement
becomes more involved. There is one bolded node in Figure
11 that does not lie on the flat surface and has two potential
movements shown by a solid and a dashed arrow. The
dashed arrow describes the shortest distance to the volume
boundary from the current node location. As seen, moving
the node to the closest surface would move the node to the
same location as an existing node and would interfere with
neighboring nodes on the surface as well as distort the
elements that contain the node in question. The more correct
move is shown with a solid arrow and yet this distance to the
proposed node location is nearly 125% greater than the
distance needed to move the node to the closer surface. To
properly move nodes, there needs to be a method to consider
global effects of node movement rather than simply local
effects.

Figure 11. Desired node movement (solid arrow)
and improper movement (dashed arrow) of a

cylinder extrude from a flat plane

Currently the sculpting algorithm resolves ambiguous edge
boundary moves as follows.

1. An optimum (allowable) element size, h, is
determined.

2. The distance from each node to all nearby

surfaces is computed. The closest (i.e.
minimum) distance is stored as d, and all
other distances are saved an ordered array, t.

3. The distance d is compared to h. If it is

roughly equal to h, the distances in array t are
used to find a more suitable placement for the
node.

4. Alternative moves are assessed by determining
if the distance to a surface, d, is less than

3 h, (i.e. 3 h is the maximum distance a
node could possibly move if a portion of the
element is contained inside the volume). If no
such move is found, then the node is moved as
in the previous case.

5. If there is such a move, the neighboring nodes

are checked to see which surface they have
moved to. If none of these neighbors has been
moved to the boundary, nodes are selected to
find one that can move to a surface with a d
less than h.

6. When this fails the original move is used.

This simple heuristic algorithm has worked for many cases
but is obviously not valid for all cases. Addition work in
resolving edge ambiguities is in progress.

5. EXAMPLES

Shown below are examples of geometries meshed using the
sculpting algorithm.

Figure 12 shows the geometry model and bounding boxes of
an object that has proven to be difficult to mesh. Figure 13
shows the sculpted all hexahedral mesh of the object.
Figure 14 shows the geometry model of a dumbbell shape
that has cylindrical cuts made into its end with its defining
bounding box. Figure 15 shows the sculpted all hexahedral
mesh.

6. CONCLUSIONS

This paper has presented some initial work on a new
automatic all hexahedral-meshing algorithm named sculpting.
There still is a large amount of work to do to make this
scheme totally robust. Only a few collapsing templates have
been introduced in this paper and more may be needed to
avoid possible knife element creation. Sculpting does
however provided a reasonable alternative to common inside-
out meshing techniques and can create high quality boundary
elements.

Figure 12. Geometry and bounding boxes of hook

object

Figure 13. Sculpted mesh of hook object

Figure 14. Geometry and bounding box of a
dumbbell shape with cylindrical intrusions

Figure 15. Sculpted all hexahedral mesh of

dumbbell shape

REFERENCES

[1] Blacker, T. , “The Cooper Tool,” Proceedings, 5th
International Meshing Roundtable, Sandia National
Laboratories, 96, October 1996, pp. 205-21513-30.

[2] Mingwu, L., Benzley, S.E., and White, D.R..,
“Automated Hexahedral Mesh Generation by Generalized
Multiple Source to Multiple Target Sweeping,” IJNME, 49,
September, 2000.

[3] Hohmeyer, M.E., and Christopher, W., “Full-Automatic
Object-Based Generation of Hexahedral Meshes,”
Proceedings, 4th International Meshing Roundtable, Sandia
National Laboratories, October 1995, pp 129-138.

[4] CUBIT, Version 7.0, Sandia National Laboratories
(2002), URL: http://endo.sandia.gov/cubit.

[5] Owen, S.J., “Constrained Triangulation: Application to
Hex-Dominant Mesh Generation,” Proceedings, 8th
International Meshing Roundtable, SNL, South Lake Tahoe,
CA., Oct 1999, pp. 31-41.

[6] Tautges, Timothy J., Ted Blacker, Scott A. Mitchell, "The
Whisker Weaving Algorithm: A Connectivity-Based Method
for Constructing All-Hexahedral Finite Element Meshes",
International Journal for Numerical Methods in Engineering,
Wiley, Vol 39, 1996, pp.3327-3349.

[7] Schneiders, R., “ Automatic Generation of Hexahedral
Finite Element Meshes,” Proceedings, 4th International
Meshing Roundtable, Sandia National Laboratories, October
1995, pp. 103-114.

[8] Schneiders, R., Schindler, R., and Weiler, F., “Octree-
based Generation of Hexahedral Element Meshes,”
Proceedings, 5th International Meshing Roundtable, Sandia
National Laboratories, 96, October 1996, pp. 205-215.

[9] Schneiders, R., “ An Algorithm for the Generation of
Hexahedral Element Meshes based on an Octree Technique,”
Proceedings, 6th International Meshing Roundtable, Sandia
National Laboratories, October 1997, pp. 195-196.

10] Jankovich, S.R., Benzley, S.E., Shepherd, J., and
Mitchell S “The Graft Tool: An All-Hexahedral Transition
Algorithm for Creating a Multi-Directional Swept Volume
Mesh,” Proceedings, 8th International Meshing Roundtable,
SNL, South Lake Tahoe, CA., Oct 1999, pp. 387-394.

[11] Miyoshi, K., and Blacker, T., “Hexahedral Mesh
Generation Using Multi-Axis Cooper Algorithm,”
Proceedings, 10th International Meshing Roundtable, SNL,
New Orleans, LA., Sep. 2000, pp. 89-100.

[12] Knupp, P.M., “Matrix Norms & The Condition
Number,” Proceedings, 8th International Meshing
Roundtable, SNL, South Lake Tahoe, CA., Oct 1999, pp.
387-394.

	ABSTRACT
	1. INTRODUCTION
	2. BOUNDING BOX GENERATION
	3. HEX COLLAPSING
	4. FINALIZING BOUNDARY CAPTURE
	5. EXAMPLES
	6. CONCLUSIONS
	REFERENCES

